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Partial exhaustion of CD8 T cells and clinical response
to teplizumab in new-onset type 1 diabetes
S. Alice Long,1 Jerill Thorpe,1 Hannah A. DeBerg,2 Vivian Gersuk,2 James A. Eddy,2

Kristina M. Harris,3 Mario Ehlers,4 Kevan C. Herold,5 Gerald T. Nepom,3 Peter S. Linsley2*

Biologic treatment of type 1 diabetes (T1D) typically results in transient stabilization of C-peptide levels (a surrogate
for endogenous insulin secretion) in some patients, followed by progression at the same rate as in untreated control
groups. We used integrated systems biology and flow cytometry approaches with clinical trial blood samples to
elucidate pathways associated with C-peptide stabilization in T1D patients treated with the anti-CD3 monoclonal
antibody teplizumab. We identified a population of CD8 T cells that accumulated in patients with the best response
to treatment (responders) and showed that these cells phenotypically resembled exhausted T cells by expressing
high levels of the transcription factor EOMES, effector molecules, and multiple inhibitory receptors (IRs), including
TIGIT and KLRG1. These cells expanded after treatment, with levels peaking after 3 to 6 months. To functionally
characterize these exhausted-like T cells, we isolated memory CD8 TIGIT+KLRG1+ T cells from responders and
showed that they exhibited expanded T cell receptor clonotypes (indicative of previous in vivo expansion), recog-
nized a broad-based spectrum of environmental antigens and autoantigens, and were hypoproliferative during
polyclonal stimulation, increasing expression of IR genes and decreasing cell cycle genes. Triggering these cells with
a recombinant ligand for TIGIT during polyclonal stimulation further down-regulated their activation, demonstrating
that their exhausted phenotype was not terminal. These findings identify and functionally characterize a partially
exhausted cell type associated with response to teplizumab therapy and suggest that pathways regulating T cell
exhaustion may play a role in successful immune interventions for T1D.
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INTRODUCTION
The therapeutic goal for type 1 diabetes (T1D) is to preserve b cell
function, commonly monitored by measuring C-peptide levels. Biologic
therapies with distinct immunologic mechanisms of action, including
anti-CD3 (otelixizumab and teplizumab), anti-CD20 (rituximab), and
costimulation blockade (abatacept), are partially effective in individuals
newly diagnosed with T1D (1, 2). Because T cells play a key role in the
pathophysiology of T1D (3), much of the effort in finding new therapies
has been directed toward inducing T cell unresponsiveness (tolerance)
(1). Multiple mechanisms have been associated with T cell tolerance in
research settings (4, 5), but this knowledge has not yet led to long-term
therapeutic benefit in T1D (1). One mechanism that can lead to T cell
unresponsiveness in vivo is T cell exhaustion (4, 6, 9–11). Exhausted
T cells are characterized by loss of effector functions (cytokine produc-
tion and proliferation), expression of multiple inhibitory receptors
(IRs), differential connectivity of transcription factors, low metabolic ac-
tivity, and dependence on continuous presence of antigen (4, 6, 9–11).
Recently, T cell exhaustion was identified as a beneficial prognostic
indicator in several autoimmune diseases (12).

Transcriptomic measurements are widely used for unbiased mech-
anistic studies and for biomarker identification. These studies have
been particularly successful with cancer, where large data sets compris-
ing hundreds to thousands of samples are freely available to the re-
search community (7). These big data approaches have been more
challenging in T1D studies, in part because of difficulties in accessing
the primary diseased tissue. Instead, because blood collection is more
practical, numerous investigators have focused on classification of T1D
patients using transcriptome profiling of whole-blood and leukocyte
populations. Although whole-blood signatures have been identified
in patients with T1D relative to controls (13), little is known about
transcript signatures associated with response to therapy.

To identify mechanisms involved in the preservation of b cell
function, we used a systems biology approach to interrogate samples
from the AbATE (Autoimmunity-Blocking Antibody for Tolerance)
study, a randomized controlled clinical trial of teplizumab treatment
in new-onset T1D (14). This was a longitudinal study with samples
collected from the same individual at multiple time points. Further-
more, individuals were synchronized in time relative to the onset of
T1D, and clinical phenotypes, such as C-peptide levels, were measured
at each collection time point. Here, we used unbiased whole-blood
transcriptomic approaches to identify cellular and molecular markers
that accompanied successful treatment with a non–Fc-binding anti-
CD3 monoclonal antibody (mAb; teplizumab) (14). We describe an
EOMES-associated transcriptional signature that is associated with
maintenance of C-peptide and is expressed by memory CD8 T cells that
phenotypically and functionally resemble partially exhausted T cells,
suggesting their role in tolerance induction.
RESULTS
Expression of EOMES-associated genes is correlated with
C-peptide levels
AbATE was a randomized controlled trial designed (fig. S1) to de-
termine whether two 14-day courses of treatment with teplizumab
a year apart would reduce the decline in C-peptide levels in T1D
patients 2 years after disease onset (14). The study included 25 un-
treated control patients, all of whom showed ≥40% loss of baseline
C-peptide levels, measured as mean area under the curve (AUC) in
a 4-hour mixed-meal tolerance test. The teplizumab-treated group
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(n = 49 of the 52 total patients who could be evaluated) comprised
27 patients (55%), whose C-peptide also declined by ≥40% (termed
nonresponders), and 22 patients (44%), who lost <40% of baseline
AUC (termed responders). Here, we use the abbreviations R, NR,
and C to refer to responders, nonresponders, and untreated controls,
respectively. The numbers and characteristics of samples used for each
of the approaches utilized are described in table S1.

We first tested the feasibility of systems approaches to this prob-
lem by conducting microarray analysis on whole-blood samples of
patients from the 12-month visit when C-peptide differences be-
tween the groups were the greatest but before treatment with the
second course of teplizumab. To search for differences at the level
of biological processes associated with networks of genes, we mon-
itored levels of immune cells and pathways using predefined sets
(modules) of co-regulated immune genes (15) using modular ap-
proaches. Because C-peptide AUC is commonly used as a marker
of T1D progression (2), we reasoned that genes and pathways
whose expression was most correlated with AUC would include genes
involved in b cell preservation. Our experimental approach to test this
hypothesis is outlined in fig. S2.

We ranked all genes by correlation with AUC and then tested
for pathways overrepresented in the most highly correlated genes
testing for gene overlap with predefined gene modules (15, 16). We
first tested AUC-correlated genes for overlap with a set of modules
defined by expression in different hematopoietic cell types (16).
This analysis revealed a single module of natural killer (NK)/T cell
genes [previously termed “module 559” (16)] that overlapped sig-
nificantly with a range of set sizes for AUC-correlated genes (fig.
S3). A plot from one representative set size is shown in Fig. 1A.
Overlapping genes included cytotoxic genes (GZMA, GZMH, and
GZMK) and cell surface markers common to both CD8 T cells and
NK cells (CD160 and NKG7). When an equivalent set size of genes
arranged in random order was used (Fig. 1A), none of the modules
showed significant overlap. Thus, CD8 T cell and NK cell genes were
most strongly associated with C-peptide levels.

To further characterize pathways, processes, and cell types cor-
related with C-peptide levels, we extended the analysis of AUC-
correlated genes to a second set of immune modules, termed immune
marker modules (15). This set of modules comprised the top genes
correlated with various hematopoietic cell CD molecules, cytokines,
and transcription factors in an immune cell gene expression atlas
(15). Genes in each module were not necessarily unique, and many
of the modules shared genes (15). When tested against AUC-correlated
Long et al., Sci. Immunol. 1, eaai7793 (2016) 18 November 2016
genes, numerous modules showed significant overlap (fig. S3). The
most significant overlap was seen with a module of genes associated
with the transcription factor EOMES (EOMES.mod; Fig. 1B) and with
other gene modules (n = 12) that shared significant numbers of genes
(fig. S3) with EOMES.mod (all showed >~5% overlap, hypergeometric
P ≤ 1.5 × 10−7). Modules not significantly overlapping with EOMES.
mod (n = 98) did not show significant overlap with AUC-correlated
genes (fig. S3). Moreover, none of the modules showed coherent and
significant overlap with randomly ranked genes (fig. S3 and Fig. 1B).
Together, these findings indicate that several modules sharing sig-
nificant numbers of genes with EOMES.mod were enriched in AUC-
correlated genes. Because EOMES and EOMES-associated genes
consistently scored near the top in many different analyses in our
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Fig. 1. An NK/T cell, EOMES-associated gene signature was detected in whole
blood of teplizumab R patients. (A and B) Bar plots of the overlap between module
559 (A) or EOMES.mod (B) and the 400 top C-peptide–correlated or randomly
ordered genes. Dashed line, FDR = 0.05. (C) Blue line, enrichment score for
overrepresentation of EOMES.mod genes in a list of all genes ranked by expression
in R samples versus C samples; solid vertical black lines, positions of EOMES.mod
genes in the ranked list; dashed vertical line, median number of genes. (D) Differen-
tial gene expression for R patients versus C patients. Blue dots, selected NK/CD8 T cell
genes; gray dots, all other genes. Horizontal dashed line, FDR = 0.05; vertical dashed
line, log2(fold change) = 0. (E) EOMES gene expression versus AUC. The P value was
calculated using independent permutation analysis of samples from each visit.
(F) EOMES expression versus AUC, colored by EBV reactivation. RPM, reads per million.
(G) Overlap of AUC-correlated genes (n = 300; table S2) with the top 300 EOMES-
associated genes. The right y axis shows C-peptide AUC levels (means ± SD). (H) Left:
A protein-protein interaction network of the 300 genes most highly correlated with
EOMES expression. Right: Expanded view of the boxed area.
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studies (Fig. 1), we selected EOMES-correlated genes (table S2) as a
prototype gene set to use in subsequent studies, focusing on the top
100 to 300 EOMES-associated genes.

EOMES-associated gene levels correlate with the
R phenotype
After identifying an EOMES-associated signature across all samples, we
tested for association of the signature with the different patient groups
using gene set enrichment analysis (GSEA) (17). We quantified enrich-
ment of immune molecular modules (15) in gene lists ranked by expres-
sion in R versus C or R versus NR. EOMES.mod and other modules
sharing significant numbers of genes were found to have high enrichment
scores coupled with high −log10 false discovery rate (FDR) or lowest
corrected−Pvalues, indicatingpreferential associationwithR samples ver-
sus C samples (fig. S4). EOMES.mod genes were significantly associated
withR, as comparedwithC (Fig. 1C). These findings indicate that elevated
levels of EOMES-associated genes were associated with the R phenotype.

EOMES-associated gene expression correlates with
C-peptide kinetics
To determine temporal changes in EOMES-associated gene expres-
sion, we expanded our analysis to include all available whole-blood
RNA samples in the AbATE study (0-, 6-, 12-, and 24-month visits;
table S1). For these expanded studies, we used RNA sequencing
(RNA-seq) technology, which is rapidly supplanting microarray
analysis as the method of choice for transcriptomic analysis (18).
Consistent with the microarray analysis, we detected increased ex-
pression of EOMES and several other CD8 T cell/NK cell genes in
R samples (Fig. 1D). By comparing EOMES transcript to clinical
outcomes, we found that levels of EOMES transcript were significantly
correlated with AUC across all samples (Fig. 1E), most strongly in R
samples. We also found that levels of EOMES transcript and AUC
were significantly correlated with Epstein-Barr virus (EBV) reactiva-
tion, indicating that failure to control EBV is associated with increased
expression of EOMES (Fig. 1F).

The kinetics of the EOMES-associated gene up-regulation was
examined by detecting their enrichment in AUC-correlated genes at
each individual timed visit (Fig. 1G). Enrichment of EOMES-associated
genes after the first course of treatment was greatest at the 6-month visit
and decreased at the 12- and 24-month visits. Because RNA samples
from the 18-month visit were not available, we could not determine
how gene expression levels were affected by the second course of ther-
apy. Changes in expression of EOMES-associated genes paralleled the
changes in C-peptide levels observed clinically (Fig. 1G).

To test interconnectedness of EOMES-associated genes, we proj-
ected them onto a protein-protein interaction network (19). The re-
sulting network graph (Fig. 1H) showed that EOMES-associated genes
comprised a highly interconnected set of proteins and were highly
enriched in genes having known interactions (FDR < 2 × 10−16).
The network was also significantly enriched for genes annotated with
the KEGG (Kyoto Encyclopedia of Genes and Genomes) term
“Natural killer cell mediated cytotoxicity” (FDR = 2.9 × 10−4) and con-
tained both effector molecules (GZMA, GZMB, PRF1, and IFNG) and
IRs (KLRG1 and TIGIT).

R patients display increased levels of CD8 T cells expressing
EOMES-associated genes
To determine what cell types were best correlated with EOMES
mRNA, we performed a comparison of EOMES expression levels
Long et al., Sci. Immunol. 1, eaai7793 (2016) 18 November 2016
by RNA-seq with frequencies of various cell types determined by
flow cytometry tests conducted on peripheral blood mononuclear
cell (PBMC) samples from the same visits (20). Of all the popula-
tions tested (n = 33), EOMES levels were best correlated with levels
of CD8 memory T cells (r = 0.71) and more weakly with NK cells (r =
0.33) (fig. S5).

To better determine what cell types express EOMES-associated
genes, we augmented our gene expression analysis with in-depth
flow cytometry analysis. We interrogated cryopreserved PBMCs
by flow cytometry using panels of mAbs targeting cell subset markers
and selected proteins encoded by EOMES-associated genes (table
S3). We began by performing a broad univariate analysis, followed
by coexpression analyses, and then focused longitudinal analyses
(fig. S6).

We first compared patients who exhibited extreme EOMES-high
(mostly R patients) and EOMES-low (mostly NR patients) gene ex-
pression profiles (table S1). We used both mean fluorescence intensity
(MFI) and percent positive cells as metrics for single-cell marker ex-
pression. As shown in Fig. 2A, MFI for the IRs TIGIT, KLRG1, and
CD160 was increased on CD8 T cells, yet EOMES protein levels did
not differ significantly with any cell type. In contrast, both the overall
fold change and significance of expression differences were greater
when percentages of positive cells were measured (compare Fig. 2,
A and B). The proportion of memory CD8 and, to a lesser extent,
naive CD8 T cells expressing EOMES and other signature proteins
increased most significantly in EOMES-high patients (Fig. 2B). An
example of the increase in percentage of cells coexpressing EOMES-
associated proteins in selected EOMES-high versus EOMES-low pa-
tients is shown in Fig. 2C.

Because of the high level of expression of TIGIT and KLRG1
proteins and their strong association with EOMES protein, we
measured the coexpression of TIGIT and KLRG1 proteins on total
CD8 T cells in peripheral blood over time (Fig. 2D). When analyzed
across the entire AbATE study, percentages of TIGIT+KLRG1+ CD8
T cells increased after both treatment courses (Fig. 2D), reaching a
maximum of 3 to 6 months in R patients after each course of treat-
ment. Percentages of TIGIT+KLRG1+ CD8 T cells increased to a lesser
extent in NR patients and remained constant in C patients. Last, we
analyzed the composition of TIGIT+KLRG1+ CD8 T cells in R pa-
tients over time and found no evidence of selective expansion of a
specific subtype of differentiation (Fig. 2E). Together, these findings
demonstrate that percentages of CD8 T cells expressing certain
EOMES-associated proteins in peripheral blood increased in R pa-
tients after teplizumab treatment.

CD8 T cells expressing EOMES network genes display a
restricted TCR usage
Although CD8 memory cells expressed EOMES, TIGIT, and
KLRG1 proteins by flow cytometry, the extent to which they ex-
pressed the full set of EOMES-associated genes was not known.
To better characterize expression of EOMES network genes, we iso-
lated CD45RO+TIGIT+KLRG1+ CD8 T cells [double high (DH)] from
R patients after the first course of treatment at month 6 (n = 3) (Fig.
3A). For comparison, we isolated CD45RO+TIGIT−KLRG1− CD8
T cells [double low (DL)] from the same patients. We then performed
low-input bulk RNA-seq on replicate samples from both populations
and compared expression of the full EOMES-associated gene set. DH
cells expressed higher levels of EOMES network genes (Fig. 3B). Near-
ly all the EOMES-associated genes (~95%) were expressed in DH cells,
3 of 9
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as compared with only ~85% in DL
cells. The cumulative distribution plot
for EOMES-associated gene expression
was shifted significantly to the right in
DH cells (P = 8.4 × 10−11, Kolmogorov-
Smirnov test), indicating that signature
genes were expressed at higher levels in
DH than in DL cells.

Characterization of T cell receptor
(TCR) CDR3 sequence variation (clono-
type) may be used to provide a measure
of T cell diversity and antigen specificity
(21). We used single-cell RNA-seq to
determine specificities (TCR sequences
or clonotypes) and functional capacities
(whole-transcriptome phenotypes) of
individual T cells. From the RNA-seq
data, we identified TCR clonotypes in
DH and DL cells from three R patients.
About 86% (219 of 254) good-quality
single-cell profiles from individual DH
and DL cells yielded rearranged TRAV
and/or TRBV genes, demonstrating that
they were ab T cells (table S4). When
sequences of the individual CDR3 junc-
tions were compared (Fig. 3C), DH cells
from all three patients showed more ex-
tensive clonotype sharing than did DL
cells. This finding indicates that DH
cells exhibited more in vivo clonal ex-
pansion than did DL cells (for clono-
types expressed in more than one cell,

P = 1 × 10−3, Fisher’s exact test).

It was important to determine whether CD8 T cells expressing
EOMES network genes were uniquely autoreactive T cells or repre-
sented a broader phenomenon observed on CD8 T cells, including
18 November 2016
those reactive with environmental foreign antigens. To distinguish
these possibilities, we performed a BLAST (Basic Local Alignment
Search Tool) sequence comparison of CDR3 regions of DH and DL
cell TCRs versus the NCBI (National Center for Biotechnology
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Information) nonredundant protein database. This comparison re-
vealed CDR3 regions that perfectly matched previously described
TCR sequences (13 of 315, ~4%), including well-characterized se-
quences from studies of viruses (22, 23), MAIT cells (which recognize
bacterial products) (24–26), autoantigens (23, 27), and alloantigens
(28) (table S4). The diversity of these specificities was consistent with
the high frequency of TIGIT+KLRG1+ CD8 T cells, which were found
at a much higher level than observed for single antigens. Moreover,
these data demonstrate that both DH and DL cells represent a broad-
based spectrum of CD8 T cell specificities, including both autoimmune
and environmental antigens.

CD8 T cells expressing EOMES-associated genes
phenotypically and functionally resemble partially
exhausted cells
To further characterize CD8 T cells expressing EOMES-associated
genes, we compared the proliferative capacities of DH and DL cells
sorted from the same three R patients at month 6. If DH cells func-
tionally resemble effector cells, then we would expect an increase in
proliferative capacity. By comparison, if DH cells functionally re-
semble exhausted cells, then we would expect them to be hypopro-
liferative. To minimize the amount of rare samples required, we
assessed regulation of cell cycle and proliferation genes as a mea-
sure of proliferation after stimulation with anti-CD3/anti-CD28
mAbs (polyclonal stimulation), using RNA-seq transcript profiles as
Long et al., Sci. Immunol. 1, eaai7793 (2016) 18 November 2016
the readout. As shown in Fig. 4A, mAb stimulation of DH cells
triggered a transcriptional response that included genes implicated
in in vivo activation of CD8 T cells (29). When compared with DL
cells (Fig. 4B), DH cells responded to polyclonal stimulation by up-
regulation of IRs and down-regulation of multiple cell cycle genes.
Thus, DH cells are less proliferative than DL cells and respond to
stimulation by preferential up-regulation of multiple IRs in addition
to TIGIT and KLRG1.

Exhausted T cells exhibit characteristic patterns of IR, effector
molecule, and transcription factor expression (6, 9, 10). To examine
these features in more detail, we compared expression of selected
molecules from low-input bulk profiles (Fig. 4C). In response to
stimulation, DH cells expressed significantly higher levels of IR tran-
scripts [TIGIT, KLRG1, CD160, LAG3, and HAVCR2 (TIM3)] than
did DL cells; levels of PDCD1 did not differ between the two cell types.
For effector molecules, stimulated DH cells expressed higher levels of
GZMA, GZMH, GZMK, and PRF1 than did DL cells, but GZMB and
IFNG did not differ. For transcription factors, DH cells expressed
higher levels of EOMES, MAF, and STAT4 but lower levels of E2F1
and STAT1 than did DL cells, whereas TBX21 did not differ between
the two cell types.

Although DH cells had less proliferative capacity than DL cells,
they nonetheless responded to anti-CD3/anti-CD28 stimulation.
This suggested that the elevated IR levels seen from DH cells may
make them susceptible to down-modulation upon encountering IR
ligands (IRLs). To test this possibility, we treated DH cells with poly-
clonal stimulation, with or without PVR-Fc, a soluble IRL for TIGIT.
PVR-Fc would be expected to bind the IR TIGIT, as well as costi-
mulatory receptors CD226 and CD96, on T cells (30). When we
added PVR-Fc to anti-CD3/anti-CD28–stimulated cells, we observed
regulation of many genes. Genes that were increased by polyclonal
stimulation alone were down-regulated by PVR-Fc triggering, as in-
dicated by the negative slope of the comparison for these conditions
(Fig. 4D). Thus, PVR-Fc triggering down-regulates genes that are
up-regulated by anti-CD3/anti-CD28 triggering in unstimulated cells
(Fig. 4A), consistent with delivery of an inhibitory signal with the
potential to provide tolerance.
DISCUSSION
Using a combination of systems immunology and flow cytometry
approaches, we have shown that successful therapy with teplizumab is
associated with a whole-blood gene signature comprising EOMES-
associated genes. The gene signature is correlated with C-peptide
levels, is expressed by a subset of CD8 T cells that accumulate in pa-
tients in proportion to their degree of treatment response (R > NR >
C), and appears with kinetics mirroring the timing of teplizumab ther-
apy. Therefore, our data indicate that this cell subset is closely asso-
ciated with successful response to teplizumab therapy.

Combined, the whole-blood gene signature and flow cytometry
results indicate an increase in the percentage of CD8 T cells express-
ing EOMES signature genes in peripheral blood of R patients after te-
plizumab treatment. This observation is supported by the finding
that DH cells show significant TCR sharing (Fig. 3C), as would occur
during clonal expansion in vivo, consistent with perfect sequence
matches to TCRs recognizing known foreign antigens and auto-
antigens. Support for generation of a novel cell subset as opposed
to expansion of a preexisting cell type comes from the finding that
EOMES-high cells exhibited elevated levels of IRs TIGIT, KLRG1,
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Fig. 3. TIGIT+KLRG1+ CD8 memory T cells from R patients expressed
expanded TCRs. (A) Gating scheme for isolation of TIGIT+KLRG1+ (DH) and
TIGIT−KLRG1− (DL) populations from CD8 memory (CD8+CD45RO+ of CD3+CD56−)
T cells. (B) Cumulative distribution plots for the fraction of EOMES network genes
detected (y axis) versus expression levels (x axis). This plot is representative of the
three R patients tested; the plot comprises five replicates for DH cells and four
replicates for DL cells from a single individual. (C) Each segment in the plot rep-
resents a library (or cell), yielding a TCR junction from DH cells isolated from three
R patients (tables S1 and S4). Arcs connect cells sharing junctions, with line thickness
proportional to the number of junctions shared between cells. Responders 1 to
3 yielded 56, 44, and 67 unique junctions, respectively, and 4, 5, and 9 expanded
junctions (i.e., expressed more than one cell) for DH cells, and 70, 30, and 49
unique junctions and 1, 2, and 0 expanded junctions for DL cells.
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and CD160 on naive and memory CD8
T cells (Fig. 2, A and B). Also, we did not
detect the EOMES signature before therapy
(Fig. 1). Likewise, DH cells expressed an
increased proportion and higher expres-
sion levels of EOMES-associated genes
than did DL cells (Fig. 3B). The detection
of EOMES network genes in both popu-
lations, albeit at different levels, suggests
complexity in the regulation of these genes
in different cell populations, perhaps through
differential connectivity of EOMES in dif-
ferent cell types or activation states (6). To-
gether, our data suggest that the CD8 T cells
that accumulate in R patients are both qual-
itatively and quantitatively different from
cells that exist in C patients. Elevations of
CD8 cell levels with altered functional re-
sponses have been noted in other clinical
18, 2016
studies with teplizumab (20, 31). It is presently unknown whether
increased frequencies of CD8 T cells accompany C-peptide stabiliza-
tion in clinical studies with other biologic agents.

Previous reports have identified several CD8 T cell populations
whose accumulation might delay decline of b cell function in T1D,
including CD8 T cells with unique suppressive activity (32, 33), cy-
totoxic CD8 T cells that could be “CD8 suppressors” by virtue of
killing antigen-presenting cells (34, 35), CD8 T cells that regulate
response to antigens by other mechanisms (36), and a novel CD8
T-NK “hybrid” cell type (37). Another possibility is that successful
therapies may induce CD8 T cell exhaustion (9, 11) in T1D. In
support of this possibility, we found that EBV reactivation corre-
lates with EOMES transcript levels, as would be expected if ex-
hausted CD8 T cells could not control chronic viral infection.

The EOMES-associated gene-expressing CD8 T cells we identified
(DH cells) resemble partially exhausted CD8 T cells in important
Long et al., Sci. Immunol. 1, eaai7793 (2016) 18 November 2016
ways. DH cells sorted from R patients after teplizumab treatment ex-
press higher levels of multiple IRs than do DL cells, including TIGIT,
KLRG1, CD160, LAG3, and TIM3 (Fig. 4C). Initially, PDCD1 was
proposed as a marker for exhausted T cells (4, 38), but in our studies,
PDCD1 levels do not differ between DH and DL cells (Fig. 4, C and
D). An additional feature of DH cells shared with exhausted T cells is
that they are hypoproliferative after TCR ligation, compared with DL
cells, and respond to polyclonal activation by greater up-regulation of
IRs and lower up-regulation of cell cycle genes (Fig. 4B). The fact that
DH cells are expanded in R in vivo suggests that treatment with
teplizumab induces DH cells, as opposed to expanding a preexisting
hypoproliferative population. Although expansion of a hypoproliferative
population may seem counterintuitive, the paradox can be explained if
the exhaustion phenotype developed subsequent to expansion.

However, DH cells do not exhibit all commonly accepted
features of terminally exhausted cells. Exhausted cells are generally
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Fig. 4. DH cells up-regulate multiple IRs and
down-regulate cell cycle genes during anti-CD3/
anti-CD28 stimulation. (A) Differential gene expres-
sion in anti-CD3/anti-CD28 mAb–stimulated DH cells
versus anti-CD3/anti-CD28 mAb–unstimulated DH
cells. Blue dots, selected CD8 T cell genes that cor-
relate with T cell expansion in acute EBV infection
(29); gray dots, all other genes. Horizontal dashed line,
FDR = 0.05; vertical dashed line, log(fold change) = 0.
(B) Differential gene expression in CD3/anti-CD28
mAb–stimulated DH cells versus DL cells. Red dots,
selected IR genes; blue dots, selected cell cycle genes;
gray dots, all other genes. (C) Gene expression of
selected IRs (left), effector molecules (middle), and
transcription factors (right) in anti-CD3/anti-CD28–
stimulated DH and DL cells from three R patients.
Horizontal bars, means. Asterisks indicate genes that
were detected as differentially expressed byWilcoxon
test (*P<0.05 and *P≥0.01; **P<0.01 and **P≥0.001;
***P<0.001 and ***P≥0.0001; ****P<0.0001). (D)Y axis,
gene regulation [log(fold change)] triggered by stim-
ulation of DH cells (A); x axis, gene regulation trig-
gered by anti-CD3/anti-CD28 mAbs ± soluble PVR-Fc.
This projection is restricted to genes regulated signifi-
cantly under both conditions (FDR < 0.05).
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thought to have reduced effector function (4, 9, 11). Although the
effector activity of DH cells is unknown, they express robust levels
of effector molecules, especially after polyclonal activation (gran-
zymes, IFNG, etc.; Fig. 4C), making it likely that they retain some
effector functions. Moreover, DH cells are not fully exhausted, because
they are down-modulated by PVR-Fc, a ligand for the IR TIGIT (Fig.
4D). In other systems, there is a requirement for persistent antigen
exposure for maintenance of the exhausted phenotype (4). However,
in R patients, the relationship between CD8 T cells expressing
EOMES-associated genes and antigen persistence is unclear. Elevated
DH cells persisted for many months after treatment, whereas teplizu-
mab is no longer detectable on the surfaces of T cells 2 weeks after
completing a 2-week treatment course (14).

Together, the coexpression of multiple IRs, reduced but not ablated
proliferative capacity, and the ability to be further down-regulated by
IR triggering suggest that DH cells have a partially exhausted–like
phenotype (39). How this is beneficial for T1D patients remains to
be elucidated, in particular, how it relates to the status of islet-reactive
CD8 T cells in R patients. Our results show correlation, not necessarily
causality, between partial CD8 T cell exhaustion and favorable re-
sponse to therapy in T1D. However, in light of our results, it is reason-
able to speculate that the beneficial effects of teplizumab therapy may
result in part from partial or transient exhaustion and, consequently,
reduced islet autoreactivity of CD8 effector T cells. The absence of a
terminally exhausted phenotype suggests a lack of complete cell com-
mitment and is consistent with the transient nature of the clinical ef-
fect of teplizumab. In contrast, because partial exhaustion is also seen
in foreign antigen–specific cells and correlates with reactivation of
EBV, caution should be taken in using anti-CD3 therapy for an
extended period of time.

Immunotherapy trials in cancer have shown that agents reversing
effector T cell exhaustion to increase antitumor immunity result in
marked clinical responses (40). One side effect of these anticancer
therapies is autoimmune diabetes (41), consistent with findings that
signatures associated with CD8 T cell exhaustion positively correlate
with improved prognosis for autoimmunity (12). Therefore, our
studies provide primary evidence that pathways clinically important
and undesirable for tumor immunology are also potentially important
but desirable for response to teplizumab therapy in T1D. Although
agents that reverse T cell exhaustion are undergoing intense investiga-
tion as antitumor agents (40), much less attention has been given to
agents that promote and sustain T cell exhaustion as therapies for
autoimmune diseases. Our results, together with the proven clinical
tractability of this pathway in humans, suggest that enhancing CD8
T cell exhaustion may provide new therapeutic possibilities for T1D
and other autoimmune diseases.
MATERIALS AND METHODS
Study design and samples
The AbATE study involved treatment of new-onset T1D patients
with teplizumab for 2 weeks at diagnosis and after 1 year in an
open-label, randomized, controlled trial. The study design was de-
scribed previously (8), and the complete protocol is available at
www.immunetolerance.org. Analysis of EBV reactivation was de-
scribed previously (8).

Samples were collected at timed visits during the study and
stored frozen until use. For RNA extraction, whole-blood samples
were collected into Tempus tubes (Thermo Fisher Scientific), and
Long et al., Sci. Immunol. 1, eaai7793 (2016) 18 November 2016
RNA was prepared at commercial vendors (Expression Analysis
and Fisher). Flow cytometry experiments used frozen PBMCs
isolated from whole blood and were viably cryopreserved at the Im-
mune Tolerance Network Core facility. Samples for the present study
were distributed by the Immune Tolerance Network and are described
in table S1 and at www.itntrialshare.org/. Detailed methods can be
found in the Supplementary Materials.
SUPPLEMENTARY MATERIALS
immunology.sciencemag.org/cgi/content/full/1/5/aai7793/DC1
Methods
Fig. S1. Schematic representation of the AbATE trial of teplizumab in newly diagnosed T1D.
Fig. S2. Identifying biological themes enriched in top C-peptide genes.
Fig. S3. An NK/T cell, EOMES-associated gene signature was detected in whole blood of
teplizumab R patients.
Fig. S4. GSEA shows positive correlation between EOMES.mod and other overlapping modules
with the R phenotype.
Fig. S5. Correlation of EOMES expression with lymphocyte subset levels.
Fig. S6. Diagram of flow cytometric single-cell analysis of EOMES-associated proteins.
Fig. S7. Representative gating for univariate expression analysis by flow cytometry on T and NK
cell subsets.
Fig. S8. Representative gating for coexpression longitudinal analysis by flow cytometry.
Table S1. Numbers and characteristics of samples used in this study.
Table S2. EOMES-correlated genes.
Table S3. Flow cytometry panels.
Table S4. TCR rearrangements in DH cells versus DL cells.
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activation. These data suggest inducing T cell exhaustion as a potential therapeutic approach 
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